sábado, 23 de abril de 2011

Acidente Nuclear em Fukushima, no Japão

O terremoto de 8,9 graus na escala Richter e o tsunami que abalaram o Japão na madrugada do último dia 11 de março (horário de Brasília) provocaram danos na usina nuclear de Fukushima, localizada na região nordeste da ilha. Vazamentos radioativos foram registrados e um iminente desastre nuclear mobilizou a comunidade internacional.



No momento do terremoto, 11 usinas localizadas na região entraram em processo de desligamento. Como parte do procedimento, os reatores precisam ser resfriados, uma vez que a fissão nuclear permanece ocorrendo mesmo após a interrupção na geração da energia. Cerca de uma hora depois do tremor, a usina de Fukushima foi atingida pelo tsunami. O sistema de resfriamento foi avariado e os técnicos japoneses passaram a adotaram medidas alternativas, como a injeção de água do mar nos reatores. Mesmo assim, três explosões se sucederam, a última delas na manhã da segunda-feira (14). 


Usina Nuclear em Fukushima


Segundo informações do governo japonês, houve vazamento radioativo, mas os reatores estão preservados. Os níveis de radiação no entorno da usina superaram em oito vezes o limite de segurança, forçando a evacuação da população em um raio de 20 km ao redor da usina (Saiba quais os efeitos da radiação sobre o corpo humano).

Segundo Laércio Vinhas, diretor de Radioproteção e Segurança Nuclear, da Comissão Nacional de Energia Nuclear brasileira, as medidas tomadas pelo governo japonês estão de acordo com o manual de operações para crises em usinas.

Em Fukushima, explica o especialista, as explosões ocorreram quando a água usada para o resfriamento se tornou vapor de alta temperatura – liberando hidrogênio, altamente inflamável. Ainda que o reator seja danificado, Vinhas acredita que o acidente não deverá atingir grande magnitude. “Ainda sabemos pouco sobre a dimensão dos acontecimentos.
Mas mesmo com o núcleo exposto, a estrutura da usina japonesa tem capacidade para evitar uma exposição exagerada. Caso isso ocorra, as consequências serão bem locais”, afirma.



Vinhas afirma que não é possível comparar o acidente de Fukushima ao ocorrido em Chernobyl, na Ucrânia, em 1986. "Naquele caso, as estruturas eram defasadas. E o acidente aconteceu com o reator em funcionamento", explica o diretor. O evento do Japão é mais parecido com o acidente na usina Three Mile Island, em 1979, nos Estados Unidos”, avalia Vinhas.

Na ocasião, em TMI, não houve vítimas nem vazamento de radiação para além dos limites da usina. No entanto, no Japão, com o acidente ainda fora de controle e dificuldade das autoridade em mensurar seus efeitos, os estragos podem ser maiores.





Usina de Fukushima depois no acidente

sexta-feira, 22 de abril de 2011

Acidente radioativo com o Cesio 137

Um dos maiores acidentes com o isótopo Césio-137 teve início no dia 13 de setembro de 1987, em Goiânia, Goiás. O desastre fez centenas de vítimas, todas contaminadas através de radiações emitidas por uma única cápsula que continha césio-137.


Antigo ferro velho onde desmontaram a
capsula com o cesio 137



O instinto curioso de dois catadores de lixo e a falta de informação foram fatores que deram espaço ao ocorrido. Ao vasculharem as antigas instalações do Instituto Goiano de Radioterapia (também conhecido como Santa Casa de Misericórdia), no centro de Goiânia, tais homens se depararam com um aparelho de radioterapia abandonado. Então tiveram a infeliz ideia de remover a máquina com a ajuda de um carrinho de mão e levaram o equipamento até a casa de um deles.

O maior interesse dos catadores era o lucro que seria obtido com a venda das partes de metal e chumbo do aparelho para ferros-velhos da cidade. Leigos no assunto, não tinham a menor noção do que era aquela máquina e o que continha realmente em seu interior. Após retirarem as peças de seus interesses, o que levou cerca de cinco dias, venderam o que restou ao proprietário de um ferro-velho.


Cápsula contendo Cesio-137

O dono do estabelecimento era Devair Alves Ferreira que, ao desmontar a máquina, expôs ao ambiente 19,26 g de cloreto de césio-137 (CsCl), um pó branco parecido com o sal de cozinha que, no escuro, brilha com uma coloração azul.

Ele se encantou com o brilho azul emitido pela substância e resolveu exibir o achado a seus familiares, amigos e parte da vizinhança. Todos acreditavam estar diante de algo sobrenatural e alguns até levaram amostras para casa. A exibição do pó fluorescente decorreu 4 dias, e a área de risco aumentou, pois parte do equipamento de radioterapia também fora para outro ferro-velho, espalhando ainda mais o material radioativo.

Algumas horas após o contato com a substância, vítimas apareceram com os primeiros sintomas da contaminação (vômitos, náuseas, diarreia e tonturas). Um grande número de pessoas procurou hospitais e farmácias clamando dos mesmos sintomas. Como ninguém fazia ideia do que estava ocorrendo, tais enfermos foram medicados como portadores de uma doença contagiosa. Dias se passaram até que foi descoberta a possibilidade de se tratar de sintomas de uma Síndrome Aguda de Radiação.

Somente no dia 29 de setembro de 1987, após a esposa do dono do ferro-velho ter levado parte da máquina de radioterapia até a sede da Vigilância Sanitária, é que foi possível identificar os sintomas como sendo de contaminação radioativa.
Os médicos que receberam o equipamento solicitaram a presença de um físico nuclear para avliar o acidente. Foi então que o físico Valter Mendes, de Goiânia, constatou que havia índices de radiação na Rua 57, do Setor Aeroporto, bem como nas suas imediações. Diante de tais evidências e do perigo que elas representavam, ele acionou imediatamente a Comissão Nacional Nuclear (CNEN).

O ocorrido foi informado ao chefe do Departamento de Instalações Nucleares, José Júlio Rosenthal, que se dirigiu no mesmo dia para Goiânia. No dia seguinte a equipe foi reforçada pela presença do médico Alexandre Rodrigues de Oliveira, da Nuclebrás (atualmente, Indústrias Nucleares do Brasil) e do médico Carlos Brandão da CNEN. Foi quando a secretaria de saúde do estado começou a realizar a triagem dos suspeitos de contaminação em um estádio de futebol da capital.

A primeira medida tomada foi separar todas as roupas das pessoas expostas ao material radioativo e lavá-las com água e sabão para a descontaminação externa. Após esse procedimento, as pessoas tomaram um quelante denominado de “azul da Prússia”. Tal substância elimina os efeitos da radiação, fazendo com que as partículas de césio saiam do organismo através da urina e das fezes.

As remediações não foram suficientes para evitar que alguns pacientes viessem a óbito. Entre as vítimas fatais estava a menina Leide das Neves, seu pai Ivo, Devair e sua esposa Maria Gabriela, e dois funcionários do ferro-velho. Posteriormente, mais pessoas morreram vítimas da contaminação com o material radioativo, entre eles funcionários que realizaram a limpeza do local.


Descentende da vítima do cesio









O trabalho de descontaminação dos locais atingidos não foi fácil. A retirada de todo o material contaminado com o césio-137 rendeu cerca de 6000 toneladas de lixo (roupas, utensílios, materiais de construção etc.). Tal lixo radioativo encontra-se confinado em 1.200 caixas, 2.900 tambores e 14 contêineres (revestidos com concreto e aço) em um depósito construído na cidade de Abadia de Goiás, onde deve ficar por aproximadamente 180 anos.

No ano de 1996, a Justiça julgou e condenou por homicídio culposo (quando não há intenção de matar) três sócios e funcionários do antigo Instituto Goiano de Radioterapia (Santa Casa de Misericórdia) a três anos e dois meses de prisão, pena que foi substituída por prestação de serviços.


Atualmente, as vítimas reclamam da omissão do governo para a assistência da qual necessitam, tanto médica como de medicamentos. Fundaram a Associação de Vítimas contaminadas do Césio-137 e lutam contra o preconceito ainda existente.

O acidente com Césio-137 foi o maior acidente radioativo do Brasil e o maior do mundo ocorrido fora das usinas nucleare.





Fonte: http://www.brasilescola.com/quimica/acidente-cesio137.htm

Acidente Nuclear de Chernobil

O acidente nuclear de Chernobil ocorreu dia 26 de abril de 1986, na Usina Nuclear de Chernobil (originalmente chamada Vladimir Lenin) na Ucrânia (então parte da União Soviética). É considerado o pior acidente nuclear da história da energia nuclear, produzindo uma nuvem de radioatividade que atingiu a União Soviética, Europa Oriental, Escandinávia e Reino Unido, com a liberação de 400 vezes mais contaminação que a bomba que foi lançada sobre Hiroshima. Grandes áreas da Ucrânia, Bielorrússia e Rússia foram muito contaminadas, resultando na evacuação e reassentamento de aproximadamente 200 mil pessoas.


Cidade fantasma de Pripyat com a
usina de Chernobil ao fundo

Cerca de 60% de radioatividade caiu em território bielorrusso.


Localização do reator de
Chernobil na Ucrânia




O acidente fez crescer preocupações sobre a segurança da indústria nuclear soviética, diminuindo sua expansão por muitos anos, e forçando o governo soviético a ser menos secreto. Os agora separados países de Rússia, Ucrânia e Bielorrússia têm suportado um contínuo e substancial custo de descontaminação e cuidados de saúde devidos ao acidente de Chernobil. É difícil dizer com precisão o número de mortos causados pelos eventos de Chernobil, devido às mortes esperadas por câncer, que ainda não ocorreram e são difíceis de atribuir especificamente ao acidente. Um relatório da Organização das Nações Unidas de 2005 atribuiu 56 mortes até aquela data – 47 trabalhadores acidentados e nove crianças com câncer da tireóide – e estimou que cerca de 4000 pessoas morrerão de doenças relacionadas com o acidente. O Greenpeace, entre outros, contesta as conclusões do estudo.


O governo soviético procurou esconder o ocorrido da comunidade mundial, até que a radiação em altos níveis foi detectada em outros países. Segue um trecho do pronunciamento do líder da União Soviética, na época do acidente, Mikhail Gorbachev, quando o governo admitiu a ocorrência:


Boa tarde, meus camaradas. Todos vocês sabem que houve um inacreditável erro – o acidente na usina nuclear de Chernobyl. Ele afetou duramente o povo soviético, e chocou a comunidade internacional. Pela primeira vez, nós confrontamos a força real da energia nuclear, fora de controle.




O Acidente


Sábado, 26 de abril de 1986, à 1:23:58 a.m. hora local, o quarto reator da usina de Chernobil - conhecido como Chernobil-4 - sofreu uma catastrófica explosão de vapor que resultou em incêndio, uma série de explosões adicionais, e um derretimento nuclear.


Imagem de satélite da área
atingida pelo acidente






Mapa mostrando o avanço da
radiação após o acidente




Causas


Há duas teorias oficiais, mas contraditórias, sobre a causa do acidente. A primeira foi publicada em agosto de 1986, e atribuiu a culpa, exclusivamente, aos operadores da usina. A segunda teoria foi publicada em 1991 e atribuiu o acidente a defeitos no projeto do reator RBMK, especificamente nas hastes de controle. Ambas teorias foram fortemente apoiadas por diferentes grupos, inclusive os projetistas dos reatores, pessoal da usina de Chernobil, e o governo. Alguns especialistas independentes agora acreditam que nenhuma teoria estava completamente certa. Na realidade o que aconteceu foi uma conjunção das duas, sendo que a possibilidade de defeito no reator foi exponencialmente agravado pelo erro humano.
Porém o fator mais importante foi que Anatoly Dyatlov, engenheiro chefe responsável pela realização de testes nos reatores, mesmo sabendo que o reator era perigoso em algumas condições e contra os parâmetros de segurança dispostos no manual de operação, levou a efeito intencionalmente a realização de um teste de redução de potência que resultou no desastre. A gerência da instalação era composta em grande parte de pessoal não qualificado em RBMK: o diretor, V.P. Bryukhanov, tinha experiência e treinamento em usina termo-elétrica a carvão. Seu engenheiro chefe, Nikolai Fomin, também veio de uma usina convencional. O próprio Anatoli Dyatlov, ex-engenheiro chefe dos Reatores 3 e 4, somente tinha "alguma experiência com pequenos reatores nucleares".
Em particular:
  • O reator tinha um fração de vazio positivo perigosamente alto. Dito de forma simples, isto significa que se bolhas de vapor se formam na água de resfriamento, a reação nuclear se acelera, levando à sobrevelocidade se não houver intervenção. Pior, com carga baixa, este coeficiente a vazio não era compensado por outros fatores, os quais tornavam o reator instável e perigoso. Os operadores não tinham conhecimento deste perigo e isto não era intuitivo para um operador não treinado.
  • Um defeito mais significativo do reator era o projeto das hastes de controle. Num reator nuclear, hastes de controle são inseridas no reator para diminuir a reação. Entretanto, no projeto do reator RBMK, as pontas das hastes de controle eram feitas de grafite e os extensores (as áreas finais das hastes de controle acima das pontas, medindo um metro de comprimento) eram ocas e cheias de água, enquanto o resto da haste - a parte realmente funcional que absorve os nêutrons e portanto pára a reação - era feita de carbono-boro. Com este projeto, quando as hastes eram inseridas no reator, as pontas de grafite deslocavam uma quantidade do resfriador (água). Isto aumenta a taxa de fissão nuclear, uma vez que o grafite é um moderador de nêutrons mais potente. Então nos primeiros segundos após a ativação das hastes de controle, a potência do reator aumenta, em vez de diminuir, como desejado. Este comportamento do equipamento não é intuitivo (ao contrário, o esperado seria que a potência começasse a baixar imediatamente), e, principalmente, não era de conhecimento dos operadores.
  • Os operadores violaram procedimentos, possivelmente porque eles ignoravam os defeitos de projeto do reator. Também muitos procedimentos irregulares contribuíram para causar o acidente. Um deles foi a comunicação ineficiente entre os escritórios de segurança (na capital, Kiev) e os operadores encarregados do experimento conduzido naquela noite.
É importante notar que os operadores desligaram muitos dos sistemas de proteção do reator, o que era proibido pelos guias técnicos publicados, a menos que houvesse mau funcionamento.
De acordo com o relatório da Comissão do Governo, publicado em agosto de 1986, os operadores removeram pelo menos 204 hastes de controle do núcleo do reator (de um total de 211 deste modelo de reator). O mesmo guia (citado acima) proibia a operação do RBMK-1000 com menos de 15 hastes dentro da zona do núcleo.


Vila abandonada nos arredores do acidente

Usina nuclear de Chernobil atualmente

O "sarcófago" que abriga o reator 4, construido para
conter a radiação liberada pelo acidente

6 de maio de 1986 - cessou a emissão radioativa.


De 15 a 16 de maio de 1986 - novos focos de incêndio e emissão radioativa.


23 de maio de 1986 - o governo soviético ordenou a distribuição de solução de iodo à população.


Novembro de 1986 - o "sarcófago" que abriga o reator foi concluído. Ele destina-se a absorver a radiação e conter o combustível remanescente. Considerado uma medida provisória e construído para durar de 20 a 30 anos, seu maior problema é a falta de estabilidade, pois, como foi construído às pressas, há risco de ferrugem nas vigas.


1989 - o governo russo embargou a construção dos reatores 5 e 6 da usina.


12 de dezembr de 2000 - depois de várias negociações internacionais, a usina de Chernobil foi desativada. 

Fonte: http://pt.wikipedia.org/wiki/Acidente_nuclear_de_Chernobil